
Reducing Feedback Pollution
Sebastián Krynski

Czech Technical University
Prague, Czechia

skrynski@gmail.com

Michal Štěpánek
Czech Technical University

Prague, Czechia
stepam38@fit.cvut.cz

Filip Říha
Czech Technical University

Prague, Czechia
rihafili@fit.cvut.cz

Filip Křikava
Czech Technical University

Prague, Czechia
filip.krikava@fit.cvut.cz

Jan Vitek
Northeastern University

Boston, USA
vitekj@icloud.com

Abstract
Just-in-time compilers enhance the performance of future
invocations of a function by generating code tailored to past
behavior. To achieve this, compilers use a data structure,
often referred to as a feedback vector, to record informa-
tion about each function’s invocations. However, over time,
feedback vectors tend to become less precise, leading to
lower-quality code – a phenomenon known as feedback vec-
tor pollution. This paper examines feedback vector pollution
within the context of a compiler for the R language. We pro-
vide data, discuss an approach to reduce pollution in practice,
and implement a proof-of-concept implementation of this
approach. The preliminary results of the implementation
indicate ⇠30% decrease in polluted compilations and ⇠37%
decrease in function pollution throughout our corpus.

CCS Concepts: • Software and its engineering ! Just-
in-time compilers; Dynamic analysis.

Keywords: Feedback vector, JIT compilation.
ACM Reference Format:
Sebastián Krynski, Michal Štěpánek, FilipŘíha, Filip Křikava, and Jan
Vitek. 2024. Reducing Feedback Pollution. In Proceedings of the 16th
ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (VMIL ’24), October 20, 2024, Pasadena, CA,
USA. ACM, New York, NY, USA, 10 pages. h�ps://doi.org/10.1145/
3689490.3690404

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL ’24, October 20, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1213-5/24/10
h�ps://doi.org/10.1145/3689490.3690404

1 Introduction
What’s past is prologue. Imagine you need to generate code
for the JavaScript function add(a,b){return a+b;}. Without
more information, the operation may concatenate strings,
add numbers, or fail in various ways. Yet, it is likely that a
given program will use this function in a speci�c and pre-
dictable way. Perhaps there is a hot loop that adds all the
integers in a large array, knowing that add was called with
integer arguments in previous iterations of the loop, could
enable compiling a version of the code speci�cally for inte-
gers to speed up subsequent iterations.

Just-in-time compilers (JIT) speculate that previously ob-
served behavior predicts future behavior. By recording infor-
mation about prior invocations of a function, JIT compilers
can unlock optimizations that would otherwise be unattain-
able. This is particularly important for dynamic languages,
where the types of variables and even the implementations
of common functions are not explicitly speci�ed in the pro-
gram text. Compilers for these languages use data structures,
commonly known as feedback vectors, to record information
such as variable types and the targets of jumps and calls.
These feedback vectors are utilized to specialize operations
based on the types of their arguments, avoid unnecessary
allocations, eliminate unused code, and inline functions.

One way to understand the role of a feedback vector is as a
compact summary of the behavior of multiple executions of a
function that the compiler uses to drive code generation. For
example, one could summarize multiple calls of the above
function by the set of types observed for each argument.
For practical reasons, operations on vectors have to be fast
and memory-e�cient. Thus, as more behaviors are observed,
feedback vectors become less precise. Consider the above
example, if one were to call the sum functions with integers,
�oats, and strings, at di�erent times, the resulting feedback
vector would be of little use to the compiler. Pollution occurs
when the information in a feedback vector ceases to be useful
for generating e�cient code. Over time, each new observed
behavior causes the feedback vector to decay. While there
are strategies to mitigate this problem, such as resetting the
feedback vectors, their e�ectiveness depends on the program
at hand.

65

https://orcid.org/0000-0002-4124-0225
https://orcid.org/0009-0006-4673-7165
https://orcid.org/0009-0009-3933-2997
https://orcid.org/0000-0002-0478-6202
https://orcid.org/0000-0003-4052-3458
https://doi.org/10.1145/3689490.3690404
https://doi.org/10.1145/3689490.3690404
https://doi.org/10.1145/3689490.3690404

VMIL ’24, October 20, 2024, Pasadena, CA, USA Sebastián Krynski, Michal Štěpánek, Filip Říha, Filip Křikava, and Jan Vitek

This paper studies the issue of feedback pollution in the
context of R, a dynamic language for statistical computing
in the vein of Python and Matlab. We start by measuring
pollution in real-world code and benchmarks, then we dis-
cuss potential strategies for reducing pollution based on our
previous work on contextual dispatch, and propose to extend
it with multiple feedback vectors. We have implemented a
proof-of-concept of this approach in the Ř JIT. The prelim-
inary results show that it reduces the number of polluted
compilations by approximately 30% and function pollution
by approximately 37%.We do not, yet, report on performance
as that will take a signi�cant implementation and evaluation
e�ort.

2 Motivation
R is a challenging target for compilation due to its dynamic
nature [3, 5]. Consider the function of Listing 1, written
in R, that sums the elements of a vector. The script takes
approximately 60 seconds in a bytecode interpreter and 6 sec-
onds when compiled (on Intel Xeon Gold 6136 CPU running
Ubuntu 20.04). Let’s look under the hood for a moment.

sum = function(vec, init) {
s = init
for (i in 1:length(vec))

s = s + vec[[i]]
s

}

N = 100*1000*1000
for (x in 1:N) sum(floats, 0.0)
for (x in 1:N) sum(integers, 0L)
for (x in 1:N) sum(floats, 0.0)

Listing 1. Motivating example

The interpreter execution is fairly stable, taking about
20 seconds on each for loop. Running the example on a JIT
compiler, we observe the following behavior. Invoking the
function with an array of �oats will quickly transition the
execution from interpretation to a fast native-compiled code
specialized for this type, as it was the only one observed so
far. At this point, the function is running at its peak perfor-
mance and �nishes in about 0.15 seconds. The emitted code
guards the input type to be �oats. Later, sum is called with
an array of integers, the speculation guard fails, and the exe-
cution continues in the interpreter while the system learns
about the new behavior. After more invocations for inte-
gers, the system triggers a recompilation. The type-feedback
information now indicates that two di�erent types were ob-
served, therefore preventing type-speci�c optimizations to
unlock. The execution resumes for integers on the recom-
piled version and �nishes in close to 3 seconds. Now, the
last execution for the �oats also takes 3 seconds as the initial
performance is lost. See �gure 1. Note, compilation times
are omitted; only peak performance is measured. While the

above example uses R, the same problem occurs in other
language VMs. For example, running the above program in
V8 results in a similar behavior1.

Call Feedback vector change

sum(floats, 0.0)

sum(integers, 0)

sum(floats, 0.0)

0.15s

3s

... [] [dbl] ...

... [dbl] [dbl, int] ... 3s

... [dbl, int] ...

Execution time Event

R, C, E

D, C, E

E

Figure 1. Execution trace for baseline compiler. R recording,
C compilation, D deoptimization, E execution.

Let’s run the example on Ř, a JIT compiler for the R pro-
gramming language [3]. The Ř compiler uses contextual dis-
patch to specialize functions based on the observed types of
arguments [2]. A context is a set of assumptions on function
arguments. The system keeps multiple versions of a function,
each optimized under di�erent assumptions. Upon invoca-
tion, it dispatches to a version compiled under a context most
suitable for the dynamic context of the call. Contexts can be
partially ordered according to the level of specialization.
For �oats, code starts running in the interpreter as the

system learns the program’s behavior. Some iterations later,
the compiler is engaged and emits specialized code under
a context 21 that assumes that the second argument is a
�oat. The execution takes a similar 0.15 seconds as before.
Now, we run the function for integers. Execution runs in the
interpreter since there is no other suitable version available;
the system now also learns about the new type. Subsequent
invocations with integers trigger a new compilation under
context 22 that states that the second argument is an integer.
The current phase �nishes in 3 seconds, again, as in the initial
example. A di�erent behavior is observed next in the last
set of invocations for �oats. The existing version for 21 is
invoked and �nishes in 0.15 seconds. Note that performance
has not deteriorated this time as the code compiled for 21
used a feedback vector that had only observed �oats. The
overall execution took about 3 seconds. See �gure 2.

Call Feedback vector change

sum(floats, 0.0)

sum(integers, 0)

sum(floats, 0.0)

0.15s

0.15s

... []

... [dbl][dbl, int] 3s R, C v2, E v2

... [dbl] ...

Execution timeContext

c1

c2

c1

Event

R, C v1, E v1

E v1

... [dbl]

...

Figure 2. Execution trace for baseline compiler with contex-
tual dispatch

In conclusion, while contexts already provide a level of
specialization and show an improvement on the initial ex-
ample, the feedback collected is still merged into a single
vector, possibly preventing future code optimizations.
1Tested with Node v22.7.0 using �oats and BigIntegers.

66

Reducing Feedback Pollution VMIL ’24, October 20, 2024, Pasadena, CA, USA

3 Feedback Pollution in R
What does a feedback pollution in R look like? To answer
this, we create an experiment in which we look at function
compilations in a sample corpus of R code. We observe the
state of the feedback vectors and how they get polluted over
the course of program execution.

3.1 Methodology
We start with an overview of the methodology used to gather
the data: how a feedback vector looks like, what we are
measuring, and how we are measuring it2.

Feedback vector. The feedback is stored in a vector next to
a function. Each element represents a slot that is connected
with a particular instruction. We emit a feedback slot for
each load, store, call, and test instructions. There is a partial
ordering between the possible values that get stored in a slot.
They are organized into a lattice, starting at ? to represent
an empty slot. Recording a new value in a slot uses the
least upper bound operation, climbing the lattice until > is
reached. There are three types of feedback:
� Observed call stores pointers to function targets up to a

certain size.
� Observed test is a �at lattice of true and false denoting
whether the branch was always or never taken.

� Observed value contains a combination of types (up to a
given size), �ags (scalar, fast vector, object, attributes3),
and whether it was a value, a promise, or an evaluated
promise.

Pollution. Ultimately, we are interested in quantifying
the feedback pollution. Pollution happens when a compiled
function gets its feedback updated. In Ř it can happen by
either a deoptimization when a failing assumption updates
the corresponding feedback slot, or from an interpreter in
the case a function is called in a context for which it has not
been compiled yet. Given the monotonicity of the feedback
vector, we use a feedback slot di�erence to measure feedback
pollution. If two slots are not the same we have a pollution.
Concretely, we use the following de�nitions to quantify the
pollution in the corpus:
� Polluted feedback slot.A feedback slot whose value is di�er-

ent from its previous value (i.e. the value from the previous
compilation).

� Feedback pollution. A ratio of the number of modi�ed
feedback slots to the total number of feedback slots.

� Polluted compilation. A compilation with feedback pollu-
tion greater than 0.

� Function pollution. A ratio of the number of polluted com-
pilations to the total number of compilations.

2Data were gathered on the same machine as reported in Section 2.
3Most R values can have attributes, a dictionary of key-value pairs that can
be used to store metadata.

Recordings. The Ř compiler can be instrumented to per-
form recording of runtime events such as compilation, up-
dates to feedback vector, or deoptimizations. We use this
feature to record the compilation events and together with
the contents of their feedback vectors. We use the latest Ř
compiler4 with the default compilation heuristics: 100 in-
vocations or 5,000 iterations for the on-stack replacement
(OSR). The partial OSR compilations are ignored as they will
be replaced by a full recompilation upon the next invocation.

Corpus. We use two codebases for our analysis: a collec-
tion of Ř benchmark suites5 used to evaluate the performance
of the compiler and a code from a Kaggle competition6 that
should represent a more realistic use of the language.
The benchmarks consist of 16 programs including the

popular shootout benchmark suite7. Together, they contain
1.3K lines of code excluding comments and blank lines (79.2
on average). We ran each benchmark in the same instance
of R 15 times. We have recorded 257 compilation events
(16.1 on average per benchmark, 2.4 per function) across 139
compiled functions (8.7 on average per benchmark).
The Kaggle code has 108 lines extracted from 391 lines

long data analysis notebook. Running the script triggered 970
compilations (on average 3.1 per function) for 315 functions
over 515 contexts (on average 1.6 per function). Together, the
feedback vectors contain 11,199 slots (on average 35.6 per
function, with as few as 1 and as many as 497 slots). Splitting
by type, there are 2,656 call slots, 1,010 test slots, and 7,533
type slots. As expected, the type slots dominate the feedback.

3.2 Pollution Analysis in Kaggle Code
We start with the analysis of the Kaggle code. Of the 315 com-
piled functions, 146 gets compiled more than once. There are
970 compilation events out of which 824 are recompilations
(2.6 on average per function). Of these, 90 are recompilations
with polluted feedback (10.9%). 19 recompilations have over
half of their feedback slots polluted and 10 have all slots
polluted. Looking at the functions, 66 out of the 315 are pol-
luted (21%). 42 functions have over half of their compilations
polluted and 26 have all compilations polluted.

Figure 3 shows the function pollution in the Kaggle code.
The x-axis lists functions that are compiled multiple times.
Each compilation is a dot and its position on the y-axis indi-
cates accumulated feedback pollution.
The distribution of feedback pollution is illustrated in

Figure 4, while the distribution of function pollution is illus-
trated in Figure 5.

4h�ps://github.com/reactorlabs/rir/commit/2536eaf
5h�ps://github.com/reactorlabs/RBenchmarking
6Exploring Survival on the Titanic, cf. h�ps://www.kaggle.com/code/
mrisdal/exploring-survival-on-the-titanic
7h�ps://benchmarksgame-team.pages.debian.net/benchmarksgame/
index.html

67

https://github.com/reactorlabs/rir/commit/2536eaf
https://github.com/reactorlabs/RBenchmarking
https://www.kaggle.com/code/mrisdal/exploring-survival-on-the-titanic
https://www.kaggle.com/code/mrisdal/exploring-survival-on-the-titanic
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

VMIL ’24, October 20, 2024, Pasadena, CA, USA Sebastián Krynski, Michal Štěpánek, Filip Říha, Filip Křikava, and Jan Vitek

0%

50%

100%

150%

200%

ty
pe

of
 (1

)
m

at
ch

 (4
)

%
||%

 (3
)

as
.v

ec
to

r (
2)

ch
ar

ac
te

r (
1)

lo
gi

ca
l (

1)
pa

re
nt

.fr
am

e
(1

)
re

p.
in

t (
2)

re
p_

le
n

(2
)

sy
s.

ca
ll

(1
)

sy
s.

fra
m

e
(1

)
un

lis
t (

34
)

ge
tC

la
ss

D
ef

 (5
9)

in
he

rit
s

(3
)

is.
fa

ct
or

 (3
)

lis
t2

en
v

(1
9)

la
pp

ly
 (2

2)
sa

pp
ly

 (3
0)

is.
ve

ct
or

 (2
)

ve
ct

or
 (2

)
nu

m
no

tn
ul

l (
39

)
se

td
iff

 (2
8)

ge
t (

7)
va

pp
ly

 (2
2)

ife
ls

e
(1

36
)

do
.c

al
l (

12
)

is.
da

ta
.fr

am
e

(3
)

is.
wa

ive
 (3

)
is

_q
uo

su
re

 (3
)

nc
ol

 (7
)

ev
al

 (1
1)

ge
ne

ric
Fo

rB
as

ic
 (2

0)
ge

tC
la

ss
 (2

4)
id

en
tic

al
 (8

)
m

at
ch

_s
el

ec
to

r (
83

)
m

at
rix

 (1
8)

is
 (1

70
)

%
in

%
 (5

)
ge

tO
pt

io
n

(5
)

ne
w

.e
nv

 (5
)

.re
gi

st
er

S3
m

et
ho

d
(9

0)
ne

w
 (1

7)
N

ex
tM

et
ho

d
(6

)
ap

pl
y

(4
97

)
si

m
pl

ify
2a

rra
y

(1
88

)
as

si
gn

 (7
)

ge
t0

 (7
)

m
at

ch
.fu

n
(6

5)
fo

rm
al

s
(1

6)
ge

tG
ro

up
M

em
be

rs
 (4

4)
.id

en
tC

 (9
)

st
rs

pl
it

(9
)

as
 (1

56
)

en
vh

oo
k

(1
06

)
qu

o_
sq

ua
sh

_i
m

pl
 (1

7)
N

RO
W

 (1
9)

.c
la

ss
En

v
(4

9)
un

it
(7

4)
ge

tG
en

er
ic

 (9
9)

.c
he

ck
G

ro
up

Si
gL

en
gt

h
(2

75
)

no
de

_s
qu

as
h

(2
5)

.g
et

G
en

er
ic

Fr
om

C
ac

he
Ta

bl
e

(8
1)

m
at

ch
.a

rg
 (9

5)
ch

ec
kN

A
(6

8)
f (

14
1)

R
ed

uc
e

(2
49

)

Function name (number of feedback slots)

Fe
ed

ba
ck

 p
ol

lu
tio

n
of

 s
ub

se
qu

en
t c

om
pi

la
tio

ns

Figure 3. Function pollution in the Kaggle script. Each point represents a compilation. The y-axis shows an accumulated compilation
pollution.

745

0

10

20

30

40

50

0% 25% 50% 75% 100%

N
um

be
r o

f c
om

pi
la

tio
ns

Figure 4. Distribution of feedback pollution across compila-
tions in the Kaggle code.

For example, the function typeof has three compilations
in total. The plot shows that both the second and the third
compilations use completely polluted feedback, i.e. all slots
are di�erent from the previous compilation. This is a simple
R wrapper over the C builtin that determines the type of
storage for a given value. It can be called with any type and
thus will pollute all its slots with every new type.

Most functions that are compiled multiple times stabilize
after a second compilation with about a quarter of slots
polluted. The few that change over half of their feedback in

250

0

10

20

30

40

50

0% 25% 50% 75% 100%

N
um

be
r o

f f
un

ct
io

ns

Figure 5. Distribution of the function pollution across the
Kaggle code.

a second compilation are very small functions with small
feedback vectors. After manual inspection, most of these
functions represent pollution caused by the fact that they are
polymorphic, having some of the feedback slots connected
to their parameters. But there are exceptions, for example,
the getClassDef with over 50 feedback slots. It looks up a
de�nition of a class that can be stored in a number of places
(e.g. a package namespace or a local cache for frequently
accessed classes). It contains a complex control �ow to locate
the correct de�nition. As it is called with di�erent classes, it

68

Reducing Feedback Pollution VMIL ’24, October 20, 2024, Pasadena, CA, USA

exercises di�erent execution paths, �lling up the feedback
as it proceeds. This is an example of pollution related to the
global state.

3.3 Pollution Analysis in Benchmarks
Despite having more code, the benchmarks exercise fewer
functions than the Kaggle code. This is unsurprising, as the
benchmarks are small algorithmic programs that primarily
do numerical computations. However, given that we use
these benchmarks for the performance evaluation of the
Ř JIT compiler, the question to ask is: Do the benchmark
programs su�er from feedback pollution?
Figure 6 shows the benchmark pollution, i.e. the ratio of

the compiled functions within each benchmark that have at
least one polluted compilation.

0%

25%

50%

75%

100%

bi
na

ry
tre

es
 (2

)

kn
uc

le
ot

id
e

(4
)

m
an

de
lb

ro
t (

3)

fa
st

ar
ed

ux
 (4

)

pi
di

gi
ts

 (3
3)

vo
lc

an
o

(1
2)

bo
un

ce
 (6

)

nb
od

y
(6

)

sp
ec

tra
ln

or
m

 (6
)

fle
xc

lu
st

 (3
9)

co
nv

ol
ut

io
n

(5
)

st
or

ag
e

(3
)

fa
nn

ku
ch

re
du

x
(2

)

fa
st

a
(8

)

re
ge

xd
na

 (2
)

re
ve

rs
ec

om
pl

em
en

t (
4)

Benchmark name (number of compiled functions)

R
at

io
 o

f p
ol

lu
te

d
fu

nc
tio

ns

Figure 6. Benchmark pollution.

Out of the 16 benchmarks, 10 manifest feedback pollution
(62.5%). The ratio between polluted feedback compilations is
8.2%, which is close to what we have seen in the Kaggle code.
This is caused by a few functions from the standard library
that get compiled a lot due to inlining. However, looking
at the functions, from the 139 compiled functions, 21 are
polluted (15.1%), suggesting that the benchmark code has a
lower pollution rate than the Kaggle code. This is likely due
to the nature of the benchmarks themselves. They are short
algorithmic programs that are generally type-stable, and
therefore not as likely to su�er from feedback pollution as
other real-world code. Nevertheless, the pollution is present
and should be addressed.

3.4 Feedback Slot Changes
From the three types of slots, the observed values are re-
sponsible for most of the pollution. Out of the 11,199 slots
in the Kaggle code, 0.5% of observed calls, 2.7% of observed
tests, and 5.7% of observed values are polluted during the
execution of the program. This is expected as it is mostly
types that vary.

The next question to ask is whether there are any patterns
in the feedback pollution, and what type of changes are the
most frequent. We �nd that there are 122 unique changes,
but almost half of them (55) happen only once. Table 1 shows
the top 10 most often observed changes. As expected, the
most often changes are related to the types.

Table 1. Most often changes in feedback slots

Feedback slot change Occurrence Accumulated
add double 5% 5%

add logical, set is scalar 5% 9.9%
set always true 4.8% 14.7%

set has attributes 4% 18.7%
add NULL 3.8% 22.5%

add list 3% 25.5%
add integer, set is scalar 2.5% 28%
add NULL, add double 2.3% 30.3%

add character, set is scalar 2.3% 32.6%
change is scalar to is vector 2.3% 34.9%

3.5 Summary
Table 2 summarizes the feedback pollution in the corpus.
The main takeaways are:
� The feedback pollution is present in both the benchmarks

and the real-world code.
� The benchmarks have lower pollution rates than the Kag-

gle code mostly due to the di�erent nature of the code.
� The pollution is mostly caused by polymorphic functions

that are called with di�erent types, but there are instances
of pollution related to the global state.

� Slots representing the observed values get polluted the
most.

Table 2. Summary of the feedback pollution in the corpus

Kaggle Benchmarks
Lines of code 108 1,268
Compilations 970 257
Polluted compilations 90 (10.9%) 21 (8.2%)
Compiled functions 315 139
Polluted functions 66 (21%) 21 (15.1%)

4 Context-Dependent Feedback in R
Acknowledging the feedback pollution, we propose an ap-
proach to reduce it by keeping separate copies of the type-
feedback vectors, one per observed context. Let’s revisit the
motivating example from Section 2 under this lens. Execu-
tions in the interpreter for the context 21will use a dedicated
feedback vector that only observes the �rst argument to be
an array of �oats. Similarly, separate information is kept for
22which only observes arrays of integers. When compilation

69

VMIL ’24, October 20, 2024, Pasadena, CA, USA Sebastián Krynski, Michal Štěpánek, Filip Říha, Filip Křikava, and Jan Vitek

Call Feedback vector change

sum(floats, 0.0)

sum(integers, 0)

... [] [dbl] ... 0.15s

... [] [int] ... 0.15s

Execution timeContext

c1

c2

Event

R, C v1, E v1

R, C v2, E v2

Figure 7. Execution trace for context-dependent feedback

triggers for each of the contexts, the relevant type-feedback
vector is passed to the compiler, and, as a result, both get
optimized for the fast case. The system has averted the pre-
viously observed type-feedback pollution and the overall
execution decreased to less than a second, cf. Fig. 7.

For the following discussion, we introduce two de�nitions:
� Compilation context the context under which a function

gets compiled. The compiler is free to use any assumptions
present in the context to optimize the code.

� Call context has a dynamic nature and describes the argu-
ments used at the call site. At invocation, the system uses
the call context to �nd a suitable version that matches an
existing compilation context. It either picks an already-
compiled version or compiles a new one for the current
call context. The operation always succeeds, since the
top context (one that does not impose any restrictions) is
always present.
Note that in the previous example the compilation and

call contexts are the same. This is not always the case as it
will be shown later.

Under the hypothesis that splitting the type-feedback vec-
tors can avoid certain pathologies, we extend the Ř compiler
with the new approach and describe the main changes to the
default implementation.

4.1 Design
Extending a single feedback vector to multiple feedback vec-
tors per function entails a number of challenges that need
to be addressed:
� Where to store the additional feedback vectors?
� How to instruct the lazily evaluated promises to update

the correct feedback vector?
� How to instruct inlined functions to update the appropri-

ate feedback vector upon deoptimization?
� What to do with sparse feedback information?

For convenience of implementation and as a fail-safemech-
anism, we record the pro�led information twice: one for the
current call context and one for the generic (or top) context.
As such, the top context’s feedback will combine all the infor-
mation observed, similar to the single vector in the baseline
implementation. This can prove useful when no other infor-
mation is available. We are aware of the additional run-time
cost the extra recording introduces, and it will be optimized
in the future.

Additional feedback vectors. As with most JIT compil-
ers, Ř keeps a single feedback vector per function. Additional

vectors are now kept in an array, sorted by their correspond-
ing call context, and starting from the most specialized con-
text. This enables fast retrieval as a lookup simply returns
the �rst satisfactory element.

Promises. R is a lazy language. A promise is created for
each argument at call site and later forced by the callee
when needed. As such, the execution of a promise in the
bytecode interpreter can also record pro�le information. The
baseline implementation will record this information in the
mentioned single feedback vector of the function. In the new
approach, we update the vector for the call context of the
function that created the promise. But, as a promise can out-
live the stack frame of its maker, this information might not
be available anymore when the promise gets executed; there-
fore, promises now need to also remember the mentioned
call context for a later use.

Call context of inlined code. In Ř, the inlined code is
specialized for the static call site context inferred at compile-
time, as there is no dynamic call context at the time of inlin-
ing. This context is now preserved in the IR to have it avail-
able should a deoptimization occur while executing inlined
code. In other words, we want to preserve similar semantics
as if the callee had not been inlined, and that means keep-
ing additional information around that was previously not
needed. Additional care is needed for OSR-compiled code.

4.2 Compilation Feedback
When a new compilation is triggered for a given context, a
feedback vector is also an input to the compilation process.
In a system that maintains multiple vectors, it is necessary to
pick the most appropriate vector among all the available. The
simplest would be to choose the vector that exactly matches
the current compilation context. This, however, does not
work well in practice. The observation is that the function
being compiled could have been previously executed (inter-
preted) under several other call contexts than the current, but
only a few times or none at all under the one being requested.
In other words, the recorded information may be incomplete
or scattered over a number of feedback vectors where some
of the slots are empty. The trade-o� is, empty feedback will
hinder opportunities for optimization, whereas wrong or
partial information will likely lead to deoptimizations.

Feedback substitution. We now address how missing
feedback information is handled. The following example may
seem rare, but was observed quite frequently. A function 5
calls 6. Execution runs in the interpreter a few times while
the feedback gets recorded. 5 runs in the interpreter and
the inferred call context 21 is used to invoke 6, therefore
as the key for the recorded feedback information on each
invocation to 6. Sometime later, 5 gets compiled, which in
turn triggers the compilation of 6. When compiling 5 , the

70

Reducing Feedback Pollution VMIL ’24, October 20, 2024, Pasadena, CA, USA

optimizer picks up a compilation context 22, more special-
ized than 21, under which to compile (and later call) 6. The
problem is, there is no feedback information for the new
context 22 as 6 was never run under it.

This poses an interesting situation where an inner compi-
lation is requested and there is no relevant feedback informa-
tion available. If we insist on compiling (and even inlining),
we can borrow information from other contexts. This infor-
mation, however, may be too generic leading to slow code, or
too speci�c leading to deoptimizations. Alternatively, we can
compile 5 and delay the compilation of 6 until subsequent
invocations coming from the newly compiled 5 trigger a
compilation for 6. This means spending more time in the
interpreter (or, worse, swinging back and forth from native
to interpreted code), while ruling out inlining altogether.
We opted for the �rst option, namely forcing the inner

compilation. The empty feedback for context⇠ is substituted
with the smallest⇠min, such that⇠ < ⇠min and⇠min contains
su�cient information, defaulting at the top context. This
works on the assumption that contexts closer to the top are
more likely to contain information.

Feedbackmerging. This mechanism merges the feedback
vectors recorded for di�erent contexts. Merging is performed
on a slot-by-slot basis and works by replaying the collected
information in the source slot into the target slot. The fol-
lowing merging strategies were implemented and compared:

� no-merging strategy,
� merging of information of all smaller contexts, and
� merging of only the candidate contexts that would cur-

rently dispatch to the compiled version, therefore skipping
the ones for which a compilation is already in place.

While this mechanism can unlock some optimizations,
the main motivation for merging is to collect information
recorded under call contexts which the newly compiled ver-
sion could have been executed from. It addresses the problem
of excessive deoptimization and deoptimization loops.
The no-merging strategy can lead to some well-known

pathologies. As the compilation context can be di�erent
from the call context, a deoptimization event will update the
feedback vector of the calling context, while also invalidating
the current code for future executions. If no merging action
is taken, recompiling the function under the same context as
before will not include the recently learned behavior. This
can lead to unwanted deoptimization and reoptimization
loops.

Feedback �lling. This mechanism �lls the empty slots
with feedback recorded for other call contexts. The following
�lling strategies were implemented and compared:

� no-�lling strategy,
� �lling with the top feedback, and

� �lling feedback of context ⇠ with the information in con-
texts ⇠8 , such that ⇠ < ⇠8 , by traversing these contexts
from the smallest to the top feedback.
Unlike the feedback merging, designed with a focus on

minimizing deoptimizations, feedback �lling focuses primar-
ily on code optimization, no-�lling being the most conserva-
tive.

In summary, the synthesis of the feedback information
works as follows: a compilation is requested for a given
context, and the corresponding feedback vector is selected
if it exists; otherwise, the described feedback substitution
mechanism is used. Only then are the set merge and �lling
strategies applied accordingly.

The mentioned strategies aim to strike a balance between
having only one feedback vector and entirely separate feed-
back information for each context. As demonstrated in the
examples above, the latter approach is impractical when
taken to the extreme. The requested feedback information
for a context might not always be available, so a compro-
mise measure is needed. We experimented with combina-
tions of merge and �lling strategies for the R benchmark
suite. Preliminary numbers indicate that merge candidates
(3) and traversal �lling (3) perform slightly better than other
combinations, however this requires further exploration of
real-world programs.

5 Preliminary Results
To experiment with the context-dependent feedback de�ned
in the previous chapter, we have implemented an initial
proof-of-concept in the Ř compiler. While the change itself
is not big (⇠550 lines of C++ code), it cross-cuts most of the
compiler and the runtime system code base.

In this section, we provide some preliminary results of the
implementation using candidate merging strategy and tra-
versal �lling strategy. How does our context-dependent strat-
egy impact feedback pollution? We focus our evaluation on
the pollution itself rather than performance improvements.
To measure performance, we would need to straighten the
proof-of-concept implementation. For example, one shortcut
we took was recording simultaneously the feedback for the
top context and the current context.
Figure 8 shows the di�erence in the feedback pollution

across compilations in the Kaggle code with the context-
dependent feedback. In the majority of the functions, split-
ting the feedback reduced the pollution. There are a few
cases where it got worse. Manually looking at the functions,
we conclude that this is because the feedback is related to
the global state. In this case, splitting the context ampli�es
the pollution. This is one of the issues that will be addressed
in future work.
The impact of the change on the distribution of polluted

compilations in the Kaggle code is illustrated in Figure 9,

71

VMIL ’24, October 20, 2024, Pasadena, CA, USA Sebastián Krynski, Michal Štěpánek, Filip Říha, Filip Křikava, and Jan Vitek

0%

50%

100%

150%

200%
ty

pe
of

 (1
)

m
at

ch
 (4

)
as

.v
ec

to
r (

2)
ch

ar
ac

te
r (

1)
lo

gi
ca

l (
1)

pa
re

nt
.fr

am
e

(1
)

re
p.

in
t (

2)
re

p_
le

n
(2

)
sy

s.
ca

ll
(1

)
sy

s.
fra

m
e

(1
)

%
||%

 (3
)

ge
tC

la
ss

D
ef

 (5
9)

in
he

rit
s

(3
)

is.
fa

ct
or

 (3
)

lis
t2

en
v

(1
9)

la
pp

ly
 (2

2)
sa

pp
ly

 (3
0)

is.
ve

ct
or

 (2
)

ve
ct

or
 (2

)
nu

m
no

tn
ul

l (
39

)
se

td
iff

 (2
8)

ge
t (

7)
va

pp
ly

 (2
2)

ife
ls

e
(1

36
)

do
.c

al
l (

12
)

is.
da

ta
.fr

am
e

(3
)

is.
wa

ive
 (3

)
is

_q
uo

su
re

 (3
)

nc
ol

 (7
)

ev
al

 (1
1)

id
en

tic
al

 (8
)

ge
ne

ric
Fo

rB
as

ic
 (2

0)
ge

tC
la

ss
 (2

4)
m

at
ch

_s
el

ec
to

r (
83

)
m

at
rix

 (1
8)

is
 (1

70
)

%
in

%
 (5

)
ge

tO
pt

io
n

(5
)

ne
w

.e
nv

 (5
)

.re
gi

st
er

S3
m

et
ho

d
(9

0)
ne

w
 (1

7)
N

ex
tM

et
ho

d
(6

)
ap

pl
y

(4
97

)
si

m
pl

ify
2a

rra
y

(1
88

)
as

si
gn

 (7
)

ge
t0

 (7
)

m
at

ch
.fu

n
(6

5)
fo

rm
al

s
(1

6)
ge

tG
ro

up
M

em
be

rs
 (4

4)
st

rs
pl

it
(9

)
.id

en
tC

 (9
)

as
 (1

56
)

en
vh

oo
k

(1
06

)
qu

o_
sq

ua
sh

_i
m

pl
 (1

7)
N

RO
W

 (1
9)

.c
la

ss
En

v
(4

9)
un

it
(7

4)
ge

tG
en

er
ic

 (9
9)

.c
he

ck
G

ro
up

Si
gL

en
gt

h
(2

75
)

no
de

_s
qu

as
h

(2
5)

.g
et

G
en

er
ic

Fr
om

C
ac

he
Ta

bl
e

(8
1)

m
at

ch
.a

rg
 (9

5)
ch

ec
kN

A
(6

8)
f (

14
1)

R
ed

uc
e

(2
49

)
as

.n
um

er
ic

_v
er

si
on

 (5
4)

as
N

am
es

pa
ce

 (2
5)

is.
pr

im
iti

ve
 (1

3)
st

ru
ct

ur
e

(8
8)

ch
ec

k.
le

ng
th

 (1
9)

ch
ec

k_
ob

je
ct

 (2
7)

Function name (number of feedback slots)

Ac
cu

m
ul

at
ed

 p
ol

lu
tio

n

Feedback
Vector

Multiple

Single

Figure 8. Di�erence in accumulated pollution in the Kaggle script with di�erent approaches.

745

0

10

20

30

40

50

0% 25% 50% 75% 100%

N
um

be
r o

f c
om

pi
la

tio
ns

(a) Single feedback vector

806

0

10

20

30

40

50

0% 25% 50% 75% 100%

N
um

be
r o

f c
om

pi
la

tio
ns

(b)Multiple feedback vectors

Figure 9. Distributions of feedback pollution across compi-
lations in the Kaggle code for di�erent approaches.

while the impact on the function pollution is illustrated in
Figure 10. Both �gures show an improvement in their dis-
tribution for context-dependent feedback. In both cases, the
most interesting changes are the decrease (of more than 50%)
in the 100% polluted compilations and functions, and the
increase of the non-polluted compilations and functions.

In Figure 11 we show the di�erence in feedback pollution
for the benchmarks. Similarly as for the Kaggle code, in 7
cases, having multiple feedback contexts reduced the pollu-
tion. In one case, the pollution was ampli�ed, again due to
the global state.

250

0

10

20

30

40

50

0% 25% 50% 75% 100%

N
um

be
r o

f f
un

ct
io

ns

(a) Single feedback vector

280

0

10

20

30

40

50

0% 25% 50% 75% 100%

N
um

be
r o

f f
un

ct
io

ns

(b)Multiple feedback vectors

Figure 10. Distributions of the function pollution across the
Kaggle code for di�erent approaches.

Table 3 summarizes the pollution across the corpus for the
proof-of-concept implementation. These results, compared
to the results in Table 2, show ⇠30% decrease in the num-
ber of polluted compilations and ⇠37% decrease in function
pollution.

6 Related Work
Feedback-directed compilers deal with pro�le data in di�er-
ent ways. The nature of the problem is, however, similar:
compile for precision following the latest observed behav-
ioral trends, or accept polluted information and compile for
a more general case. The former strategy discards part of the

72

Reducing Feedback Pollution VMIL ’24, October 20, 2024, Pasadena, CA, USA

0%

25%

50%

75%

100%

bi
na

ry
tre

es

kn
uc

le
ot

id
e

m
an

de
lb

ro
t

fa
st

ar
ed

ux

pi
di

gi
ts

vo
lc

an
o

bo
un

ce

nb
od

y

sp
ec

tra
ln

or
m

fle
xc

lu
st

co
nv

ol
ut

io
n

st
or

ag
e

fa
nn

ku
ch

re
du

x

fa
st

a

re
ge

xd
na

re
ve

rs
ec

om
pl

em
en

t

Benchmark name

R
at

io
 o

f p
ol

lu
te

d
fu

nc
tio

ns Feedback Vector
Multiple

Single

Figure 11. Di�erence in benchmark pollution with di�erent
approaches.

Table 3. Summary of the feedback pollution in the corpus
with multiple feedback vectors

Kaggle Benchmarks
Compilations 987 275
Polluted compilations 68 (7.9%) 11 (4%)
Compiled functions 323 139
Polluted functions 44 (13.6%) 11 (7.9%)

observed information in favor of recent observations at the
expense of additional recompilations and deoptimizations.
Context-sensitive pro�ling is a technique used to reduce feed-
back pollution by keeping the pro�led information separate
based on the speci�c context the code is executed. The goal
is to have precise information and thus enable more aggres-
sive and specialized optimizations such as context-sensitive
inlining. The context can take several forms: argument types,
speci�c call sites, and even call stacks.
The Tru�e Framework collects feedback through self-

rewriting ASTs [8]. They deal with the problem of feedback
pollution by tree cloning and inlining ASTs at call sites. As
this increases the number of nodes in the system, a mecha-
nism is needed to carefully choose the cloned targets. This
di�ers from our new approach, as we keep only one feed-
back vector for all the call sites sharing similar specialization,
therefore merging such information. It also alleviates the
memory allocated for pro�le information.

The V8 Javascript engine uses feedback vectors to record
runtime characteristics of the executing program. It shows
similar behavior to Ř on the motivating example: calling
the sum function with di�erent types of arguments degrades
its performance as more generic versions are compiled. In
the past, V8 considered adding a time limit to the feedback
vectors allowing to recover from pollution [7]. In JS, often a
function is polymorphic only because it has been called with
di�erent types of arguments at the beginning of program

execution. After some initialization, the program eventually
stabilizes [6]. To prevent this kind of pollution, V8 does two
things. First, it delays allocating the type feedback vector
until the function is called at least 8 times. Second, unlike
in Ř, it uses weak pointers in feedback vectors preventing
it from keeping dead types or callee targets alive allowing
for some recovery. In general, the worry in V8 is more in the
deoptimization loops, not performance degradation.
Hotspot [4] uses method invocations and loop counts to

trigger tiered compilation. Feedback is constantly re�ned as
new information is collected. However, after too many deop-
timizations, Hotspot gives up and compiles a more generic
version. For inlining, Hotspot supports monomorphic, bi-
morphic, and mega-morphic callees. A method can be re-
compiled over time for a di�erent set of callees in an attempt
to capture the stable patterns.
Jalapeño’s Adaptive Optimization System [1] accommo-

dates di�erent online analyses of feedback. It uses a cost-
bene�t analysis to determine whether a recompilation is
pro�table. Statistical samples of method calls are used to
maintain an approximation of the dynamic call graph, and
"hot" edges are then passed to the optimizing compiler. These
inlining decisions are recomputed periodically. For example,
a method can be �agged for recompilation if new opportuni-
ties for inlining have emerged since its last compilation.

7 Conclusion
Feedback pollution is a common issue in just-in-time compil-
ers. The problem is more pronounced in dynamic languages,
where functions are generally more polymorphic. The feed-
back collected for these di�erent types gets merged into a
single feedback vector, leading to less e�cient code. This
paper explored an alternative approach inwhichwe keep sep-
arate feedback vectors for di�erent invocation contexts. We
implemented a proof-of-concept in the context of Ř JIT. The
preliminary results are encouraging showing ⇠30% decrease
in the number of polluted compilations and ⇠37% decrease
in function pollution across the corpus. The new strategy
can alleviate a family of existing pathologies; however, the
general problem of pollution remains.

In summary, we have shown that context-dependent feed-
back can reduce feedback pollution. However, whether it
will lead to performance improvements remains to be seen.
As shown, there are functions whose performance can be
improved by an order of magnitude. What is not clear is how
many such functions are there in the real-world code. Ana-
lyzing that is part of our future work. Moreover, a polluted
function does not necessarily mean the performance is lost
in the compiled version, as some slots can have a meager con-
tribution overall. This hints at a possible di�erent approach
that could statically identify and re�ne this information at
compile-time.

73

VMIL ’24, October 20, 2024, Pasadena, CA, USA Sebastián Krynski, Michal Štěpánek, Filip Říha, Filip Křikava, and Jan Vitek

The �rst step forward is to improve the current implemen-
tation which still has a ways to go. The recording overhead
can be improved by avoiding redundant recording in the
top context. New merge strategies and compilation heuris-
tics for missing feedback information need to be further
explored. Lastly, a �ner-grained approach could be devised
where part of the feedback information is context-dependent,
while other is shared among other contexts. For example, the
amount of feedback information could be also reduced by
not storing slots that are fully determined by others. Without
this engineering e�ort, it is hard to draw any conclusions.

Data Availability. Our code is open source and available
online: h�ps://gitlab.com/rirvm/splitfeedback-experiments/-
/tree/artifact.

Acknowledgments
We greatly thank all the people contributing to Ř over the
years. We thank the anonymous reviewers, for their insight-
ful comments and suggestions to improve this paper. This
work was supported by the Czech Science Foundation grant
23-07580X and a grant from Czech Ministry of Education,
Youth and Sports under program ERC-CZ, grant agreement
LL2325 as well as NSF grants CCF-1910850, CNS-1925644,
and CCF-2139612 and by the Student Summer Research Pro-
gram 2024 of FIT CTU in Prague.

References
[1] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.

Sweeney. 2011. Adaptive optimization in the Jalapeno JVM. SIGPLAN
Not. 46, 4 (2011). h�ps://doi.org/10.1145/1988042.1988048

[2] Olivier Flückiger, Guido Chair, Ming-Ho Yee, Jan Jecmen, Jakob Hain,
and Jan Vitek. 2020. Contextual Dispatch for Function Specialization.
Proc. ACM Program. Lang. 4, OOPSLA (2020). h�ps://doi.org/10.1145/
3428288

[3] Olivier Flückiger, Guido Chari, Jan Jecmen, Ming-Ho Yee, Jakob Hain,
and Jan Vitek. 2019. R melts brains: an IR for �rst-class environments
and lazy e�ectful arguments. In International Symposium on Dynamic
Languages (DLS). h�ps://doi.org/10.1145/3359619.3359744

[4] Sun Microsystem. 1999. The Java HotSpot Performance Engine Archi-
tecture. h�ps://www.oracle.com/java/technologies/whitepaper.html.

[5] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. 2012. Evalu-
ating theDesign of the R Language: Objects and Functions for Data Anal-
ysis. In European Conference on Object-Oriented Programming (ECOOP).
h�ps://doi.org/10.1007/978-3-642-31057-7_6

[6] Gregor Richards, Sylvain Lesbrene, Brian Burg, and Jan Vitek. 2010. An
Analysis of the Dynamic Behavior of JavaScript Programs. In Proceed-
ings of the ACM Programming Language Design and Implementation
Conference (PLDI). h�ps://doi.org/10.1145/1809028.1806598

[7] Michael Stanton. 2016. V8 and How It Listens to You. h�ps://www.
youtube.com/watch?v=u7zRSm8jzvA.

[8] ThomasWürthinger, AndreasWöß, Lukas Stadler, Gilles Duboscq, Doug
Simon, and Christian Wimmer. 2012. Self-optimizing AST interpreters.
In Proceedings of the 8th Symposium on Dynamic Languages (Tucson,
Arizona, USA) (DLS ’12). Association for Computing Machinery, New
York, NY, USA, 73–82. h�ps://doi.org/10.1145/2384577.2384587

Received 2024-07-26; accepted 2024-08-21

74

https://gitlab.com/rirvm/splitfeedback-experiments/-/tree/artifact
https://gitlab.com/rirvm/splitfeedback-experiments/-/tree/artifact
https://doi.org/10.1145/1988042.1988048
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3359619.3359744
https://www.oracle.com/java/technologies/whitepaper.html
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.1145/1809028.1806598
https://www.youtube.com/watch?v=u7zRSm8jzvA
https://www.youtube.com/watch?v=u7zRSm8jzvA
https://doi.org/10.1145/2384577.2384587

	Abstract
	1 Introduction
	2 Motivation
	3 Feedback Pollution in R
	3.1 Methodology
	3.2 Pollution Analysis in Kaggle Code
	3.3 Pollution Analysis in Benchmarks
	3.4 Feedback Slot Changes
	3.5 Summary

	4 Context-Dependent Feedback in R
	4.1 Design
	4.2 Compilation Feedback

	5 Preliminary Results
	6 Related Work
	7 Conclusion
	References

